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A graph-theoretic method for the complete derivability of bond graphs from 
their site counterparts is described. Bond perimeter, valence, and cyclomatic 
number distributions as well as spatial extent measures can be systematically 
generated when coupled with a site valence partition in the original graph. Rele- 
vant consequences for bond configurations include the facts that (i) percolation 
perimeter and cyclomatic number distributions are equivalent, (ii) geometrical 
susceptibilities are not independent, and (iii) a critical site/bond ratio exists. 
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1. I N T R O D U C T I O N  

The study of  fully directed animals both  in a percolat ion context ~1~ and as 
diluted polymers  (2) has most ly dealt with site problems in all enumerative 
approaches  involving systematic counting,  a l though both  types of  problems 
have led to precise estimates in two dimensions when treated th rough  
subgraph expansions. (L'8/ 

For  a polymer- type approach  this has always had to do with the use 
of recurrence relations that  greatly reduce the amoun t  of configurations to 
be counted.  Bond graphs, or rather their lattice embeddings, for which no 
equivalent relations have ever been discovered, have the edge on percola- 
tion problems, where series expansions are better behaved than their site 
counterparts.(1"8) 

In spite of this, the initial effort of Redner  and Yang (3) uncovered a 
disturbing discrepancy between site and bond  polymers,  most  noticeable in 

t Laborat6rio de Fisica, Faculdade de Ciancias, Universidade do Porto, 4000 Porto, Portugal. 
2 Institut ffir Theoretische Physik, 5000 K61n 41, Federal Republic of Germany. 

389 

0022-4715/90/0100-0389506.00/0 ~) 1990 Plenum Publishing Corporation 



390 Duarte 

the critical exponent estimates, which the later exact solutions in 2D and 
3D left unexplained/2) 

In the present paper a graph-theoretic method for the derivation of 
bond configurations from the corresponding site animals is detailed. 
Originally devised as a strategy to exploit the recurrence relation proper- 
ties, this conversion method has enabled us to establish several additional 
results concerning properties of the bond percolation perimeter and the 
cyclomatic number partition of directed bond configurations. 

2. THE  S I T E - T O - B O N D  C O N V E R S I O N  M E T H O D  

The idea of site-to-bond conversion (or yield) techniques is not new 
and has been applied to undirected graphs in the past. (41 But the task is 
always cumbersome, basically involving the knowledge of the full connec- 
tivity of the underlying graph and systematic checks every time a bond 
between sites of the original graph is deleted (and thus, in a percolation 
context, added to the perimeter). Consider a partition of the sites s, 
according to the number of neighbors (their valence). For undirected 
graphs 

s=  L sv (la) 
v = l  

2b= L vs~ (lb) 
v = l  

c = b - s  + l (lc) 

f = z s - 2 b  (ld) 

with s~ the number of sites with valence v, b the number of bonds, c the 
cyclomatic number, and f the number of adjacent external bonds. For 
directed graphs, Eqs. (la)-(lc) are valid [but not (ld)] if the orientation 
of bonds connected to a given site is taken as irrelevant. The valence v 
divides naturally into a forward (w-outgoing bonds) and a backward 
(u-incident bonds) valence. For any of these, the linkage rules (la)-(lc) 
must be written as (5= z/2) 

s=  E s . =  E sw (2a) 
0 0 

b= ~ us~= ~ WSw (2b) 
u = O  w = 0  

e = 5s -- b (2c) 



Site to Bond Conversion 391 

with e measuring the adjacent external bonds according to the axis orienta- 
tion. Single-site valence, however, is useless for undirected graph conver- 
sion because complete correlations between neighboring valences are still 
required. The same applies to forward valence in directed graphs. But for 
the backward valence partition (Fig. 1), each of the u-incident bonds (but 
not all of them) can be removed (and thus transferred to the bond 
perimeter). The spatial correlations can then be treated locally, and 
connectivity will never be violated provided one incident bond is left per 
site other than the graph origin (for normal one-rooted graphs). 

At this level, all possible spanning directed bond trees of the original 
graph have been generated. The conversion factor associated with it is 

C(G) = 1 + (7)(q/P)' (3) 
i=1 

where p and q = 1 - p are the occupation (absence) probabilities, with the 
weight of G equal to pbqe The same conversion factor applies to all graphs 
with the same valence partition, and we see that the bond percolation 
distribution, as well as the valence partition, is automatically derived from 
it. With the latter, the loop partition of bond graphs follows from Eq. (2b). 

Several significant corollaries can be derived from this method: 

(i) On fully directed lattices with constant coordination number ~, 
the percolation perimeter partition at fixed size b, gb,, is just the cyclomatic 

i 

- r 

v 

Fig. 1. A directed-site triangular graph. All sites marked with a letter contribute to the 
conversion factor, Eq. (3). Site G is the only one with backward valence 3. In addition, the 
contributions of sites A, D, and G to the spatial measures along the preferred axis would be 
common to all bond graphs generated by the conversion factor. 
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number distribution gb, (with s the number of sites). From Eqs. (2) and (3), 
a bond graph with d converted bonds has perimeter e + d and size b - d .  
With these two values, Eq. (2c) is still valid and with 

t-- (2-- 1) b = 2 ( 1 - c )  (4) 

the spacing between perimeter values is equal to s and t fixes the 
cyclomatic number c at fixed b. 

(ii) The mean size and site susceptibility expansions for bond 
percolation are not independent. Averaging size moments, we have 

1= Z gbtpbq t (5) 
b = 0  

S(p )=  Z dipi=• bgb, Pbq ' (6) 
i = 1  

where S(p) is the mean size (or first moment) of the cluster size distribu- 
tion. For the site susceptibility, (1) which, according to the fluctuation- 
dissipation theorem, is given by the sum of the pair connectedness between 
the origifi and all its other sites, 

R ( p ) =  1 + ~  cip i= 2 SgbtPbq t (7) 
i s = l  

=2 ~ (t+b) gbtpbq t (8) 
b = O  

Using Eq. (5) and equating powers of p, we have 

d i = s ~(do = 0, Co = 1) (9) 

Note that for the site problem, as for undirected percolation, these two 
susceptibilities are independent. (5) 

(iii) There exists a critical site/bond ratio for directed bond animals. 
This follows from the asymptotic shape of the bond perimeter distribution 
gbt, and from the singularity structure at fixed loop number, both of which 
closely parallel the behavior found for site problems/6'7~ Such a limiting 
shape is described by a function 2(t/b) which gives the growth value for a 
given perimeter-to-size ratio when the discrete gbt are smoothed into a con- 
tinuous distribution. Trees are then the maximum-perimeter configurations 
and share the same growth constant as 1-100p,...,/-loop animals. In the 
asymptotic limit there is a critical perimeter-to-size ratio ac= (1-Pc)/Pc 
below which the growth constant 2(a) of animals at a fixed ratio is given 
by (a = t/b) 

2(a)=  ( a+  1)a+l/aa (a < a~) (8a) 



Site to Bond Conversion 393 

where a = 5 - 1 + (~/b) - (Zc/b), while for higher a, 

2 ( a ) =  [ ( a +  1 )a+ l / a" ]  e k ( a )  ( a > a c )  (8b) 

where k ( a )  is posit ive and measures  the separa t ion  f rom the critical growth 
value. 

On  the other  hand,  with the limiting logar i thmic shape of the 
per imeter  [given by n log 2 (a ) ]  distr ibution linear in the bond  size, the 
total  growth constant  for animals,  which should be taken as strictly higher 
than that  for trees, occurs at a smaller cycle/size ratio. 

3. F INAL R E M A R K S  

We have applied the me thod  to several lattices and dimensionalities,  
extending bo th  the da ta  of Redner  and Yang (3) and the percola t ion results 
of ref. 1 for d imensions  2 to 5, while duplicat ing the susceptibilities in ref. 8 
to order  25- - square ,  s. cubic (to order  16), and 4D hypercubic  (to order  
14) that  appea r  elsewhere/9) This convers ion me thod  is on the other  hand  
trivially applicable to measures  of spatial  extent (center-of-mass locat ion 
and radius of gyration(3)), which are, of course, inherited by all terms in the 
convers ion factor [Eq. (3)]  if present  in the original graph. 

A C K N O W L E D G M E N T S  

I am indebted to the Gulbenk ian  F o u n d a t i o n  for part ial  financial 
support ,  and to Joan  Adler for help with the manuscript .  This work  was 
par t ly  funded by Sonderforschungbereich 341 (Aachen-Jiil ich K61n). 

R E F E R E N C E S  

1. J. Blease, J. Phys. C 10:3461 (1977). 
2. D. Dhar, Phys. Rev. Lett. 51:853 (1983). 
3. S. Redner and Z. R. Yang, J. Phys. A 15:L177 (1982). 
4. J. Blease, J. W. Essam, and C. M. Place, J. Phys. C 11:4009 (1978); H. Ruskin, Ph.D work, 

University of London, 1974/77, unpublished. 
5. V. Privman and I. D. Vagner, Z. Physik B 50:353 (1983). 
6. J. A. M. S. Duarte, J. Phys. Lett. (Paris) 12:523 (1985). 
7. J. A. M. S. Duarte, J. Phys. (Paris) 12:383 (1986). 
8. J. W. Essam, K. de Bell, J. Adler, and F. M. Bhatti, Phys. Rev. B 33:1982 (1986). 
9. J. A. M. Duarte, Z. Phys. B, submitted. 


